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The hypotheses of the scaling universality of the wrapping probability at the percolation
threshold and of the critical exponent ν have been examined for the PM/TIP4P primitive
model of water. The obtained results confirm the validity of the recently proposed method
of determination of the percolation threshold in fluids and its characteristics, supporting
further the hypothesis of universality, and efficiency and accuracy of the method.
Keywords: Percolation threshold; Wrapping probability; Spanning probability; Scaling laws;
Clusters.

The percolation theory1 is widely used in a number of branches of science.
It deals with the formation and disruption of clusters which may have dif-
ferent interpretation depending on various applications. In molecular sci-
ence, cluster is a group of particles that are connected by an unbroken path
of interparticle bonds. The occurrence of such clusters affects substantially
the properties of fluids; particularly, the formation or disruption of an infi-
nite cluster via percolation transition. However, studies of the percolation
transition on 3D continuous systems are very time-consuming. As a result,
only rough (and sometimes contradicting) estimations of the percolation
threshold have been made for fluids.

There are two main concepts of defining spanning clusters for bulk fluids
simulated in a (cubic) box with periodic boundary conditions identified as
wrapping (having an infinite extent within the framework of the periodi-
cally repeating cells) and crossing (determined by spatial extension only)
clusters. Moreover, one can consider wrapping or crossing in one, two or
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three directions – distinguished henceforth by superscripts (e), (2), and (3),
respectively. The probability of a spanning cluster to be found in the sys-
tem is described by a function R(ρ,L), where L is the length of the edge of
the cubic simulation box and ρ is the number density. In the thermo-
dynamic limit (L → ∞, ρ = const.), R(ρ,L) approaches a step function with
R = 0 below and R = 1 above the percolation threshold ρc. Near the percola-
tion threshold and for large L, function R(ρ,L) is supposed to exhibit the
universal behavior as a function of the scaling variable (ρ – ρc)L1/ν (and
other irrelevant variables1,2).

In a recent paper3 we have examined various wrapping (Rw) and crossing
(Rcr) probability functions in the bulk fluid at several supercritical tempera-
tures and used finite-size scaling to determine their values at the percola-
tion threshold in infinite systems. We have considered a simple square-well
fluid and found that in the bulk fluid the wrapping probabilities do exhibit
highly universal behavior. The finite-size corrections for Rw at the percola-
tion threshold have been found to be negligible even in a relatively small
system of 500 molecules. We have obtained the scaling functions for wrap-
ping probabilities Rw

(e) , Rw
(2) , and Rw

(3) , and the respective values Rw,c at the per-
colation threshold in particular. On the other hand, for the crossing
probabilities, finite size corrections to scaling are large and the use of Rcr for
the localization of the percolation threshold does not seem suitable at all.

If the above mentioned finding regarding the wrapping probability is
proved to be universal, it may be used for the determination of the percola-
tion threshold in complex fluid systems because the obtained scaling func-
tions should not be very different from those for other fluids. A reasonable
estimate of the percolation threshold may thus be obtained even from one
simulation on a single system by using the critical values of the wrapping
probabilities.

Since in a recent paper3 the behavior of the spanning probability func-
tion has been examined for and the hypothesis drawn from results for one
model only, a simple square-well fluid, we examine in the present note the
wrapping probability function for a qualitatively very different model, a
primitive model of water, to further examine the hypothesis of the scaling
universality. Molecular simulations have been performed on the model
over a wide range of supercritical temperatures and the obtained results
show that even in this case the scaling universality holds true.
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THEORY AND SIMULATION DETAILS

The model considered in this paper is a primitive model4 PM/TIP4P de-
scending from the parent TIP4P model of water5.

The total intermolecular interaction consists of a hard-sphere core of di-
ameter σOO (mimicking oxygen), and three imbedded sites of two kinds:
Two sites, denoted as X, mimic the hydrogen atoms and one M-site mimics
the negatively charged site (the reader is referred to ref.4 for further details).
The attractive interaction between the unlike sites at a distance r apart is
represented by a square-well potential, uSW,

uSW(r,λ) = –ε, for r < λ

= 0, for r ≥ λ (1)

and the repulsive interaction between the like sites is represented by a hard-
sphere potential, uHS,

uHS(r,σ) = ∞, for r < σ

= 0, for r ≥ σ . (2)

Thus, the considered model assumes the form

uPM(1,2) = uHS(rOO,σOO) + u r d u rij ij
i j

ij
i j

HS SW( , ) ( )
{ }, { } { }, { }

+
∈ ∈ ∈ ∈

∑ ∑
1 2 1 2

(3)

where the summation in the second term of Eq. (3) runs over the pairs of
like sites and in the third term of unlike sites. The potential parameters σOO
and ε are conveniently used to scale distances and energies, respectively,
and we therefore set, without loss of generality, σOO = 1 and ε/kB = 1, where
kB is the Boltzmann constant. The simplicity of the attractive interaction
makes it also possible to define uniquely the criterion of bonding: Two par-
ticles create a bond whenever their interaction energy equals –ε (we note in
passing that the model does not allow creation of more than one bond be-
tween a pair of particles).

We carried out common Metropolis Monte Carlo (MC) simulations6 and
analyzed the configurations with respect to the presence of clusters using
the wrapping definition: The cluster wraps the system if it is possible to get,
starting from any particle of the cluster and moving along interparticle
bonds, to an image of that particle in another replica7. The parameters of

Collect. Czech. Chem. Commun. 2008, Vol. 73, No. 3, pp. 401–412

Wrapping Percolation Transition 403



the simulations were set so as to maintain the acceptance ratio, around
ca. 1/3. All the systems were equilibrated by performing 105N particle dis-
placement steps where N is the total number of particles in the simulation
cell. To keep the development of the simulated systems under control,
various control quantities were monitored8. Configurations used for the
evaluation of the presence of the wrapping cluster were separated by 4N at-
tempted displacement steps, and the total number of analyzed configura-
tions was 4 × 109/N.

With respect to the previous results3 we focus in this note only on clus-
ters wrapping at least in (any) one direction, Rw

(e) . For a given temperature,
T = 1/β, and number of particles, we obtain the wrapping probabilities Rw

(e)

as a function of density ρ. These functions should cross very close to ρc
which naturally depends on T. From this characteristic we can then get
a first estimate of ρc. A convenient function providing a very good fit to
R(ρ) is

f
a a a a

( )
exp( )

ρ
ρ ρ ρ

=
+ + + +

1
1 0 1

2
2

3
3

(4)

where ai are numerical parameters. As noted above, the probability R as a
function of the scaling variable (ρ – ρc)L

1/ν is supposed to be universal near
the percolation threshold and for large L, where ρc and ν are the parameters
we want to determine. Considering that the probability R is expressed as a
function of density ρ for a set of system sizes (characterized, equivalently,
by the number of particles N rather than the box length L) then

R
N

f N( ) ( )
/

ρ ρ
ρ

ν

−


















 ≠c

1 3

. (5)

Thus, a second estimate of ρc and the critical exponent ν and, conse-
quently, also Rw,c

(e) , are determined by trial and error to minimize the differ-
ences in Rw

(e) as a function of scaling variable in Eq. (5) for various N. The
obtained critical exponent ν as well as the probability R at the percolation
threshold (Rc), in an infinite system should be universal for a given
dimensionality of the system, definition of the infinite cluster, and bound-
ary conditions2.
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RESULTS AND DISCUSSION

We carried out simulations on the PM/TIP4P model for five supercritical
isotherms and for each isotherm we considered a series of the number of
particles within the range N ∈ 〈 500, 16000〉 . As a first estimate of the perco-
lation threshold we used the crossing point of the wrapping probabilities
R(ρ) for various N. That such a point may exist is demonstrated (using dif-
ferent zoom) in Figs 1 and 2. Figure 1 indicates the validity of the given ap-
proximation, Eq. (4); Fig. 2 includes also the limiting case of R(ρ,N → ∞) as
a step function with the step at the percolation threshold ρc. It is worth
noting the obvious fact: the higher the number of particles N in the system,
the sharper increase in wrapping probabilities R(ρ). The upper panel of
Fig. 3 then indicates the precision with which the percolation threshold
can be determined; in this case it is 0.3095 ± 0.01.

In Fig. 4 we show the wrapping probability as a function of the scaling
variable (ρ – ρc)L1/ν. As it is seen, all results fall on a single curve. This
means that it is possible to find values of ρc and ν such that the wrapping
probabilities can be described by universal functions of the scaling variable.
This finding holds over a wide range of the system sizes represented by N
(see also the lower panel of Fig. 3 for inverse temperature β = 6.0 with N
ranging from 500 to 16000). This fact makes it possible to specify the value
of percolation threshold density ρc. Consequently, the system of only 500
molecules is sufficiently large for the proposed method to be used for the
percolation threshold location.

The respective values of ρc, Rc and ν for all temperatures considered are
summarized in Table I. This table also includes the value of the average
energy per particle Uc/N which corresponds, for the given model, to the
average number of bonds per particle nb,c in the system. As one may intu-
itively expect, the higher temperature, the higher the percolation threshold
density ρc; this temperature dependence is shown in Fig. 5 (upper panel).
The temperature dependence of nb,c is similarly distinctive; see the lower
panel of Fig. 5. We remark that the presence of the (critical) wrapping clus-
ter then requires a higher fluid density but a lower number of bonds per
particle with increasing temperature, which seems to be related to the
change of the structural properties of the system and the clusters. In con-
trast to this fact, the parameters Rc and ν are not so strongly temperature
dependent and they are in reasonable agreement with the values obtained
for the supercritical square-well fluid3.
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FIG. 1
Wrapping probability as a function of the number density; symbols are simulation data and
the curves have been obtained from the fit (Eq. (4))
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FIG. 2
Detailed course of the wrapping probability as a function of the number density in the vicinity
of the crossing point; broken lines are fitting curves and the thick line denotes their limit for
N → +∞
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FIG. 3
Detailed course of the wrapping probability as a function of the number density (upper panel)
and the scaling variable (ρ – ρc)L

1/ν (lower panel) near the percolation threshold (solid lines)
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FIG. 4
Simulation results for the wrapping probability as a function of the scaling variable (ρ – ρc)L

1/ν for
different system size
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FIG. 5
Temperature dependence of the percolation threshold density ρc and the average number of
bonds per particle, nb,c. Open circles are simulation results, the solid line serves as a guide for
eye



CONCLUSIONS

In the present note we have examined the hypothesis on universality of the
spanning probability function for a continuous system – fluid. Unlike the
previous paper3 where a simple fluid, the square-well model, was consid-
ered, in this paper we have considered a model with strong and strongly
orientation-dependent attractive interactions mimicking water with all its
anomalies. It is shown that even for this qualitatively quite different system
the universality seems to hold. To be specific, the results may be summa-
rized as follows:

1. There exists the crossing point of the wrapping probabilities Rw
(e) (ρ) for

different (but sufficiently large) N; this point provides a very good estimate
of the percolation threshold. This means that only two simulations on sys-
tems of two sizes may be sufficient for quite an accurate percolation thresh-
old determination.

2. It has been confirmed that the wrapping probabilities can be described
by a universal function of scaling variable (ρ – ρc)L1/ν. A more accurate esti-
mate of ρc can thus be obtained by minimizing the difference according to
Eq. (5) if more simulation data are available.

3. The system of 500 particles seems to be sufficiently large for the de-
termination of the percolation threshold; a higher number of particles,
however, improves the accuracy taking into account that the density de-
pendence of the wrapping probability Rw

(e) (ρ) for higher N is stronger and
its variance for the same number of analyzed configurations near the per-
colation threshold is smaller.
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TABLE I
Parameters of the wrapping probability function and the internal energy at the percolation
threshold for the supercritical PM/TIP4P model of water in dependence on the inverse tem-
perature

β ρc Rw,c
(e) ν Uc/N

2.0 0.835 0.472 0.85 –0.795

3.0 0.708 0.471 0.89 –0.804

4.0 0.572 0.465 0.88 –0.816

5.0 0.435 0.462 0.91 –0.837

6.0 0.309 0.451 0.91 –0.870



4. The critical value of the wrapping probability Rw,c
(e) does not seem to be

a universal constant; however, it is not very much different from 0.45.
Thus, if the probability Rw

(e) in the system is about this value, we can expect
that its density ρ is also near the percolation threshold density ρc.

Because of yet unsettled problem of the determination of the percolation
threshold in continuous systems, we have focused rather on the mathemat-
ical aspect of percolation leaving physical consequences aside. Issues as,
e.g., a link of the percolation to the remarkably strong dependence of the
properties of water on the thermodynamic conditions in supercritical
states, breakage of the infinite hydrogen-bond network via percolation in
supercritical water, or a relation of the percolation density to the critical
density can be addressed only after the percolation identification in the sys-
tem has been properly clarified and will be the subject of the subsequent re-
search.

This research was supported by the Czech National Research Program “Information Society”
(project No. 1ET400720409) and by the Grant Agency of the Academy of Sciences of the Czech
Republic (project No. IAA400720710).

REFERENCES

1. Stauffer D., Aharony A.: Introduction to Percolation Theory. Taylor & Francis, London 1992.
2. Hovi J. P., Aharony A.: Phys. Rev. E 1996, 53, 235.
3. Škvor J., Nezbeda I., Brovchenko I., Oleinikova A.: Phys. Rev. Lett. 2007, 99, 127801.
4. Vlček L., Nezbeda I.: Mol. Phys. 2004, 102, 485.
5. Jorgensen W. L., Chandrasekhar J., Madura J. D., Impey R. W., Klein M. L.: J. Chem. Phys.
1983, 79, 926.

6. Allen M. P., Tildesley D. J.: Computer Simulation of Liquids. Clarendon Press, Oxford 1987.
7. Seaton N. A., Glandt E. D.: J. Chem. Phys. 1987, 86, 4668.
8. Nezbeda I., Kolafa J.: Mol. Simul. 1995, 14, 153.

Collect. Czech. Chem. Commun. 2008, Vol. 73, No. 3, pp. 401–412

412 Škvor, Nezbeda:

http://dx.doi.org/10.1103/PhysRevE.53.235
http://dx.doi.org/10.1103/PhysRevLett.99.127801
http://dx.doi.org/10.1063/1.445869
http://dx.doi.org/10.1063/1.445869
http://dx.doi.org/10.1063/1.452707
http://dx.doi.org/10.1080/00268970410001668417

